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Microwave Tomography: A Two-Dimensional
Newton Iterative Scheme
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Alexei G. Nazarov, Yuri E. Sizov, and George P. Tatsis

Abstract—In this paper, a variant of the Newton method, which
uses a fast solution of the direct problem and a dual mesh, is
proposed. Computational and physical experiments with simple
two-dimensional high-contrast phantoms are discussed, and a
full-scaled image of a two-dimensional mathematical model of
a human torso is obtained.

Index Terms—Image reconstruction, inverse problems, itera-
tive methods, microwave imaging, Newton method, tomography.

I. INTRODUCTION

M ICROWAVE imaging of biological bodies has been
of interest for a number of years [1]–[3]. Several

two-dimensional tomographic systems have been reported to
produce images of relatively simple phantoms and biological
objects [1]–[5]. In our previous work [4], a two-dimensional
prototype of a quasi-real-time microwave tomographic system
with total acquisition time of approximately 500 ms was
reported. This system was quick enough to obtain images of
a living beating canine heart.

Spectral methods (based on so-called diffraction tomogra-
phy (DT) [6]) prove to be very fast and capable of producing
reconstructions with good quantitative accuracy for small
contrast objects. However, if the first-order Born or Rytov
approximation is not valid, the reconstructed images are seri-
ously distorted. The iterative technique that combines DT and
the direct-problem solution ([7] for the Born approximation
and [8] and [9] for the Rytov approximation) considerably
extends the useful working range of DT, but is still a subject
of serious contrast limitations. More than a decade ago, several
variations of the Newton procedure were introduced [10]–[12]
that did not principally have contrast limitations. In spite of
recent developments of this method [13]–[17], its applications
are still limited to relatively small objects with dimensions
of a few wavelengths. An accurate calculation of electric
fields (needed by this method) requires a mesh discretization,
which can describe the characteristics of the physical wave
propagation. Estimations show that at least ten samples per
wavelength are necessary to obtain an accurate solution [16].
For a frequency of 1–3 GHz, this sampling rate dictates a
mesh with – elements per slice of human torso.
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Fig. 1. Geometrical configuration of the problem. Solid circles: transmitters,
hollow circles: receivers. The coarse Cartesian mesh is issued for the inverse
problem, while the fine polar mesh is used for the direct problem.

To avoid sampling the electrical properties of the object with
this extremely dense mesh, it seems natural to use a dual-mesh
scheme first introduced in [16].

Since the number of operations per matrix inversion is
proportional to , with a mesh as large as this, the tra-
ditionally used method of the direct-problem solution by a
discretization of the well-known Lipmann–Schwinger integral
equation and the direct decomposition of the matrix turns out
to be impractical. In [8] and [9], we have discussed a fast
iterative solution of the direct problem. This method is very
close to the algorithm proposed in [18]. Since the number of
operations for it is mainly proportional to , in this paper we
are able to use a further modification of the algorithm in a
Newton method for reconstruction of mathematical models of
two-dimensional objects as large as a human torso.

The results of [13] show that the use ofa priori informa-
tion contributes to better and faster reconstructions. In this
paper, we will show that in some cases the reconstruction
by the Newton method is not possible without anya priori
information.

II. FORMULATION

A. Newton Iterative Scheme

The geometry of the two-dimensional tomographic system
is shown in Fig. 1. The transmitters and receivers are located
around the object at finite discrete points. According to the
standard perturbation theory [11], the change in the electrical
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field registered by theth receiver due to a small change
in the permittivity of the illuminated by theth transmitter

object is equal:

(1)

where and are the wavenumber and
permittivity in the immersion liquid, is the frequency, and
is the light velocity. The same wave equation with the point
sources located at the corresponding transmitter and receiver
points can be used for calculation of electrical field
generated in the object by the transmitter and Green’s function

[11]

(2)

(3)

where is the wavenumber in the object and
and are the coordinates of the transmitter and the receiver.
Provided that is calculated, a step of the iteration procedure
can be formulated as

(4)

(5)

where signifies the conjugate transpose, and vectors
and denote the electrical field data measured in
the tomograph and calculated with the current value of the
permittivity . We use a standard Tikhonov regularization
[19]

(6)

with the regularization parameter chosen empirically with
a trial method. For the standard Newton iterations ,
but this process is known to diverge for extremely nonlinear
problems. In this instance, it is helpful to slow down the
iterations by choosing . Burov et al. [10] suggested
to keep .

B. Direct Problem

In [8], we described a simple iterative method of the
direct-problem solution. As long as the contrast between the
immersion liquid and object is not too large, this method is
very efficient. For example, in the case of water
and myocardial tissue , we need no more than 20
iterations to obtain a precision better than 10. However, if
the object includes such tissues as bones and fat, the iterations
may diverge. In order to overcome this problem, we devised
a more sophisticated version of the algorithm.

For definitiveness, let us consider (2). Introducing the in-
cident wave , which is generated
by the transmitter in the tomograph without an object, we can
reformulate (2) in terms of the scattered wave

(7)

Since the right-hand side of this equation is only nonzero
inside the object, we can formulate absorbing boundary condi-
tions on a circle of a radius , which lies entirely beyond the

boundaries of the object [8]. Namely, the Fourier transform
of the scattered wave

(8)

meet the following conditions:

(9)

where is the Hankel function of order .
In lossy media with , the following nonstationary

equation:

(10)

will have the solution of (7) as its stationary limit, which can
be found by using the implicit time iterations with the iteration
parameter

(11)

To solve this equation, we need a second loop of iterations

(12)

Taking into account the boundary conditions (9), it is natural
to solve (12) using the Fourier transform over the angle
coordinate in the polar coordinate system. In this way,can
be a function of . In our calculations, we try to minimize
the norm of placing the value of somewhere in the
middle between the maximum and minimum of thefor a
given . The iteration parameter plays an important role. In
the limit of , (11) reduces to (7), and the whole process
reduces to the iterations described in [8]. The smalleris,
the quicker the convergence of (11). In contrast to this, for
small , the process of (12) can slow down or even diverge,
and the larger is, the quicker the convergence of (12). In our
calculations, we optimize this parameter so that every iteration
of (12) at least halves the residual error (RE).

The number of iterations for this process does not depend
on the mesh size. If the object and the immersion liquid have
some absorption, a reasonable number of iterations provides
the solution. In the worst case of the two-dimensional model
of a human torso, 100 iterations were sufficient to obtain a
precision about 10 .

Once the scattered field is calculated on the circle of a radius
, its values at the points of receivers can be obtained using

the formula

(13)

and the inverse Fourier transform.
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Fig. 2. Evolution of 1) noiseless data witha priori bounds on the complex
permittivity, 2) noiseless data without bounds, and 3) noisy data (signal to
noise ratio of 30%) with bounds.

C. Dual Mesh

With the above direct-problem-solution algorithm, we can
afford a very fine mesh that is adequate to the physical
properties of the wave propagating through the object as
large as a human body. We use a uniform mesh in the polar
coordinate system that can have as many as 512 nods over the
angle and 200 nods over the radius. We cannot use the same
mesh to describe the electrical properties of the object because
we never have enough experimental data to reconstruct that
many unknown values of the permittivity. Also, even if we did
have them, the inversion of (5) would be a real computational
burden. Fortunately, we never need a very large mesh to
describe the electrical properties of the object [16]. For this
purpose, we use a relatively coarse Cartesian mesh that can
have up to 64 64 cells. The geometrical configuration of
the problem is shown in Fig. 1.

III. RESULTS

In order to test the above algorithm, we use a mathematical
phantom that is composed of a cylinder of 8-cm diameter
with two asymmetric segmental chambers and a small circular
hole of a 1-cm diameter. The width of the wall between the
chambers is 1.5 cm and the width of the outer wall varies
in the interval of 1–1.5 cm. The walls of the phantom has

, while the immersion liquid, chambers, and holes
have . With the small hole playing the role of a
damaged spot, it is not a big stretch to consider this phantom
as a two-dimensional model of a heart that is immersed in
water. With this mathematical phantom, we simulate measured
data for the tomograph configuration, shown in Fig. 1, which
is very close to our experimental device [4]. The tomograph
has 32 transmitters located on a circle of 16.5-cm radius. For
every transmitter, 16 receivers located behind the object on
a circle of 16-cm radius receive the radiation. As we use a
single frequency of 2.45 GHz, we have a set of 512 simulated
measured data. We use a mesh of 512200 cells in the
calculation of the simulated measured data, which is more
than adequate for obtaining a very high precision.

The initial value in all subsequent examples is the permit-
tivity of the immersion liquid. The Cartesian mesh used in the

Fig. 3. Reconstructed image of the real part of the permittivity of the
mathematical heart model. Noiseless data witha priori bounds.

Fig. 4. Reconstructed image of the imaginary part of the permittivity of the
mathematical heart model. Noiseless data witha priori bounds.

inverse problem has 32 32 cells and the polar mesh for the
direct problem has 128 64 cells. The evolution of the RE,
which is the difference between the calculated electrical field
and simulated measured data averaged over all transmitters and
receivers, is shown in Fig. 2. The spatial scale in all figures
is in centimeters.

In our first example, we use the above reconstruction
algorithm witha priori bounds on the maximum and minimum
of the real and imaginary parts of the permittivity. The images
of the real and imaginary parts of the permittivity obtained
after 30 iterations are shown in Figs. 3 and 4, respectively.
The quality of the real-part image is much better than that
of the imaginary part because the contrast between the object
and immersion liquid for the real part is more than for the
imaginary part by a factor of approximately five. In our second
example, we do not use anya priori information. In Fig. 2,
we can see that the RE stabilized on a much higher level and
the final image (see Fig. 5) is very far from the original. In
the third example, we again use thea priori bounds with the



SOUVOROV et al.: MICROWAVE TOMOGRAPHY: A 2-D NEWTON ITERATIVE SCHEME 1657

Fig. 5. Reconstructed image of the real part of the permittivity of the
mathematical heart model. Noiseless data withouta priori bounds.

Fig. 6. Reconstructed image of the real part of the permittivity of the
mathematical heart model. Noisy data (signal-to-noise ratio of 30%) with
a priori bounds.

simulated measured data with a signal-to-noise ratio of 30%.
In this case, we need a much larger regularization parameter
and the RE is larger than even in the second example, but the
image of the real part of the permittivity is still good enough
(see Fig. 6).

For the experimental investigations, two asymmetrically
enclosed cylindrical containers with thin plastic walls are
used [8]. The container cylinders have diameters of 6.5 and
2.1 cm. The inner container is filled with water. The outer
one is filled with a liquid with . The phantom
was placed in the center of the microwave chamber of our
two-dimensional tomograph. The image in Fig. 7 is in very
reasonable agreement with the real phantom.

To push our algorithm to its limits, we use a mathematical
model of a torso with external dimensions 31 26 cm,
which is composed of an elliptic 1.5-cm-thick shell with

. A model of the heart with a diameter of 13.5
cm and is placed inside the shell. The “heart”

Fig. 7. Reconstructed image of the real part of the permittivity of the
experimental phantom.

Fig. 8. Reconstructed image of the real part of the permittivity of the
mathematical torso model. Noiseless data witha priori bounds.

wall has three small holes of 1.5 and 2.5 cm. The immersion
liquid, space inside the shell, heart chambers, and holes have

. The values of the permittivity are comparable
to that of the involved biological tissues at the frequency of 1
GHz. A lower frequency is chosen because it offers a much
better penetration depth and still reasonable resolution. The
tomograph has 64 transmitters located on a circle of 30-cm
radius. For every transmitter, 64 receivers located evenly on a
circle of 20-cm radius receive the radiation. Thus, we have a
set of 4096 simulated measured data. The image of the real part
of the permittivity is shown in Fig. 8. All mentioned details
of the torso (as well as some artifacts) can be clearly seen in
this figure. In these calculations, we use a 6464 Cartesian
mesh and a 256 128 polar mesh.

All calculations were performed on a DEC Alpha-8200
computer.

IV. DISCUSSION

In our previous report [8], we concluded that 32 receivers
were not sufficient for imaging by the discussed spectral-
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domain method. With the present spatial-domain method, we
did not have such problems, and 32 receivers were adequate
in our computational and physical experiments with relatively
simple phantoms. Aside from this, this method proved to be
more robust to noise contamination.

This paper, as well as other above-cited papers, illustrate
that the Newton method is capable of finding the solution of
very nonlinear problems. However, Fig. 5 shows that, in some
cases, availability ofa priori information can be very critical.

The proposed fast method of the direct-problem solution
and a dual-mesh approach make it possible to use the Newton
method for imaging two-dimensional objects with sizes and
properties comparable to that of a human body. The last
example proved to be a challenge for our DEC Alpha-8200
computer. The program had been running several hours before
Fig. 8 was generated. Roughly speaking, in this case, the
computational efforts were equal for the direct and inverse
steps of the algorithm. There are still some possibility of
further optimization of the direct-problem solution. The only
reason we use the polar grid is that it naturally fits to the
boundary conditions (9) and allows the fast Fourier transform.
However, since this mesh has very small cells in the central
region, some other mesh types with equally sized cells can
cover the same surface with a smaller number of nodes. In
this case, it may be possible to use the stationary equivalent
of the approximate absorbing boundary conditions [20] in
conjunction with some of the known methods of the elliptic
equations solution (a very good short review of them may be
found in [21]). Though the mesh of cells used
for the inverse problem seems to be fairly sufficient in the two-
dimensional case, this number is definitely very close to the
upper limit. Taking into account the cubic dependence of the
computational efforts to solve (5) by the direct decomposition,
we can anticipate that further development of the Newton
method will depend on the invention of a fast iterative solution
of this equation. This is of particular importance for the three-
dimensional case when we have to face a mesh that is at least
64 (and probably more) times larger.
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