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Microwave Tomography: A Two-Dimensional
Newton lterative Scheme

Alexandre E. Souvorov, Alexander E. Bulyshev, Serguei Y. Semenov, Robert H. Svenson,
Alexei G. Nazarov, Yuri E. Sizov, and George P. Tatsis

Abstract—n this paper, a variant of the Newton method, which e, %
uses a fast solution of the direct problem and a dual mesh, is 0o ® °° e
proposed. Computational and physical experiments with simple e © ° o
two-dimensional high-contrast phantoms are discussed, and a ® )
. . . . [ ] ®
full-scaled image of a two-dimensional mathematical model of o o
a human torso is obtained. o o
[o] [0
Index Terms—mage reconstruction, inverse problems, itera- L4 .
tive methods, microwave imaging, Newton method, tomography. .O o.
[c] EEEENEN [o]
L ] o
l. INTRODUCTION N °
ICROWAVE imaging of biological bodies has been (:G Gf
of interest for a number of years [1]-[3]. Several .5 0 ®
two-dimensional tomographic systems have been reported to L) e
. . . . . e O ) o [
produce images of relatively simple phantoms and biological e%4%0

ObJeCtS [l]_[S]' In o_ur pFGYIOUS work [4]’ a two-dlmejnsmnal:ig. 1. Geometrical configuration of the problem. Solid circles: transmitters,
prototype of a quasi-real-time microwave tomographic SystesBilow circles: receivers. The coarse Cartesian mesh is issued for the inverse
with total acquisition time of approximately 500 ms wagroblem, while the fine polar mesh is used for the direct problem.

reported. This system was quick enough to obtain images of

a living beating canine heart. To avoid sampling the electrical properties of the object with
Spectral methods (based on so-called diffraction tomogtis extremely dense mesh, it seems natural to use a dual-mesh
phy (DT) [6]) prove to be very fast and capable of producingcheme first introduced in [16].
reconstructions with good quantitative accuracy for small Since the number of operations per matrix inversion is
contrast objects. However, if the first-order Born or Rytoyroportional to N3, with a mesh as large as this, the tra-
approximation is not valid, the reconstructed images are sefitionally used method of the direct-problem solution by a
OUS'y distorted. The iterative technique that combines DT amiscretization of the well-known Lipmann_SChwinger integra|
the direct-problem solution ([7] for the Born approximatiorrquation and the direct decomposition of the matrix turns out
and [8] and [9] for the Rytov approximation) considerablyo be impractical. In [8] and [9], we have discussed a fast
extends the useful working range of DT, but is still a subje@erative solution of the direct problem. This method is very
of serious contrast limitations. More than a decade ago, sevef@se to the algorithm proposed in [18]. Since the number of
variations of the Newton procedure were introduced [10]-[1@berations for it is mainly proportional ¥, in this paper we
that did not principally have contrast limitations. In spite ofre able to use a further modification of the algorithm in a
recent developments of this method [13]-{17], its applicationgewton method for reconstruction of mathematical models of
are still limited to relatively small Objects with dimenSionftwo-dimensiona| Objects as |arge as a human torso.
of a few wavelengths. An accurate calculation of electric The results of [13] show that the use afpriori informa-
fields (needed by this method) requires a mesh discretizatiggn contributes to better and faster reconstructions. In this
which can describe the characteristics of the phySiC&' Waﬁgper, we will show that in some cases the reconstruction
propagation. Estimations show that at least ten samples Bgrthe Newton method is not possible without amypriori
wavelength are necessary to obtain an accurate solution [%@lormation.
For a frequency of 1-3 GHz, this sampling rate dictates a
mesh with NV = 10*-10° elements per slice of human torso. Il. EORMULATION
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field registered by thgth receiverd £;; due to a small change boundaries of the object [8]. Namely, the Fourier transform
6e in the permittivity of the illuminated by théth transmitter of the scattered wave
object is equal:
k2 -

SE;; = i Ei(r)G;(r)ée(r) dr = Dée (1)
where kg = 27v\/g9/c and gy are the wavenumber andmeet the following conditions:
permittivity in the immersion liquidy is the frequency, and
is the light velocity. The same wave equation with the point E™R)  HL (koR)Y
sources located at the corresponding transmitter and receiver E;n( R) - HL (koR) ©)
points can be used for calculation of electrical figii(r)
%erge)ra[tffl] in the object by the transmitter and Green’s f“nCti\WﬂereH}n(koR) is the Hankel function of ordem.

j r

Em(r) = / exp(— i) Es(r, ) dip ®)

In lossy media withs”” > 0, the following nonstationary

(V24+E)E; = —6(r — 13) (2) equation:
(V2+ k)G = —8(r —13) ©)
i%%e (V2 4+ E)E, = (k2 — k) E (10)
wherek = 27v/e/c is the wavenumber in the object amngd at ? 0 0

andr; are the coordinates of the transmitter and the receiver.

Provided thaD is calculated, a step of the iteration procedur#ill have the solution of (7) as its stationary limit, which can
can be formulated as be found by using the implicit time iterations with the iteration

L g parameteré

(DD + afd)se” = DT (P — ) (B) (BT — ET) + (V24 ED)ET = (K — k) Eo. (11)

where 1 signifies the conjugate transpose, and vect® ) ) ) )
and /™ denote the electrical field dat&;; measured in TO Solve this equation, we need a second loop of iterations

the tomograph and calculated with the current value of the

permittivity . We use a standard Tikhonov regularizatiofié + V2 + k?) Em it
[19] = (B = F)EP T 4 ie E7 + (k3 — K*)Eo. (12)
- o? o?
Q=-V=-— - — (6) N iy o
o2 N2 Taking into account the boundary conditions (9), it is natural

with the regularization parameter chosen empirically with to solve (12) using the Fourier transform over the angle
9 P P y coordinate in the polar coordinate system. In this wagan

a trial method. For the standard Newton iteratighs= 1, . . o
be a function ofr. In our calculations, we try to minimize

but this process is known to diverge for extremely nonline%qe norm ofk? — k2 placing the value of somewhere in the

problems. In this instance, it is helpful to slow down th?niddle between the maximum and minimum of thdor a
iterations by choosings < 1. Burov et al. [10] suggested

x> n oxp givenr. The iteration parametef plays an important role. In

to keep || f<® — fr| < II71I. the limit of £ = 0, (11) reduces to (7), and the whole process
B. Direct Problem reduce_s to the iterations described in [8]. The sma&lég,

' the quicker the convergence of (11). In contrast to this, for

In [8], we described a simple iterative method of themall ¢, the process of (12) can slow down or even diverge,
direct-problem solution. As long as the contrast between thad the larget is, the quicker the convergence of (12). In our
immersion liquid and object is not too large, this method igalculations, we optimize this parameter so that every iteration
very efficient. For example, in the case of watef = 80) of (12) at least halves the residual error (RE).
and myocardial tissu¢s" = 54), we need no more than 20 The number of iterations for this process does not depend
iterations to obtain a precision better than tOHowever, if on the mesh size. If the object and the immersion liquid have
the object includes such tissues as bones and fat, the iteratisgsie absorption, a reasonable number of iterations provides
may diverge. In order to overcome this problem, we devisgBe solution. In the worst case of the two-dimensional model
a more sophisticated version of the algorithm. of a human torso, 100 iterations were sufficient to obtain a

For definitiveness, let us consider (2). Introducing the irprecision about 10%.
cident waveE, = —iH{(iko|r — r;])/4, which is generated  Once the scattered field is calculated on the circle of a radius
by the transmitter in the tomograph without an object, we ca®, its values at the points of receivers can be obtained using
reformulate (2) in terms of the scattered wakg= E; — Fy  the formula

2 2 2 2
(V + k )ES = (I{JO —k )Eo. @) H}n(k0|1‘z|)

E?’(Irvl) = ET(R) HL (koR)

13
Since the right-hand side of this equation is only nonzero (13)

inside the object, we can formulate absorbing boundary condi-
tions on a circle of a radiu®, which lies entirely beyond the and the inverse Fourier transform.



1656 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 11, NOVEMBER 1998

e
5 [Trrrrrrrrr 11T T 1T 1 1T 171717}
- . .0
C ] .8
. - b 7
e o1 2.5 - s
L - - .
li‘; o 1 .3
_g L ] .2
2 0 ] .0
[ - -
o L . .8
0.01 r . 7
-2.5} - .5
i . L 1 1 Il 3 : : . 3
0 5 10 15 20 25 30 L . .2
lteration step 5L N .0
T S T I T TN T T AT TN T [N O M T |
Fig. 2. Evolution of 1) noiseless data withpriori bounds on the complex -5 -2.5 0 2.5 5

permittivity, 2) noiseless data without bounds, and 3) noisy data (signal t

noise ratio of 30%) with bounds. . . o
Fig. 3. Reconstructed image of the real part of the permittivity of the

mathematical heart model. Noiseless data waithriori bounds.

C. Dual Mesh

With the above direct-problem-solution algorithm, we can
afford a very fine mesh that is adequate to the physice
properties of the wave propagating through the object a b
large as a human body. We use a uniform mesh in the pol:
coordinate system that can have as many as 512 nods over"
angle and 200 nods over the radius. We cannot use the sal
mesh to describe the electrical properties of the object becau
we never have enough experimental data to reconstruct th
many unknown values of the permittivity. Also, even if we did
have them, the inversion of (5) would be a real computatione
burden. Fortunately, we never need a very large mesh 1
describe the electrical properties of the object [16]. For thit
purpose, we use a relatively coarse Cartesian mesh that ¢
have up to 64x 64 cells. The geometrical configuration of
the problem is shown in Fig. 1.
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I1l. RESULTS

. _Fig. 4. Reconstructed image of the imaginary part of the permittivity of the
In order to test the above algorithm, we use a mathematiggthematical heart model. Noiseless data waitpriori bounds.

phantom that is composed of a cylinder of 8-cm diameter

with two asymmetric segmental chambers and a small circular
hole of a 1-cm diameter. The width of the wall between tHEVerse problem has 32 32 cells and the polar mesh for the

chambers is 1.5 cm and the width of the outer wall varigiréct problem has 128 64 cells. The evolution of the RE,
in the interval of 1-1.5 cm. The walls of the phantom ha\g/hlch is the difference between the calculated electrical field

e = 544415, while the immersion liquid, chambers, and hole@nd simulated measured data averaged over all transmitters and

havee = 80 +410. With the small hole playing the role of a_rec_eivers,_ is shown in Fig. 2. The spatial scale in all figures
damaged spot, it is not a big stretch to consider this phantd$n/n centimeters.
as a two-dimensional model of a heart that is immersed in!n our first example, we use the above reconstruction
water. With this mathematical phantom, we simulate measura@orithm witha priori bounds on the maximum and minimum
data for the tomograph configuration, shown in Fig. 1, whic®f the real and imaginary parts of the permittivity. The images
is very close to our experimental device [4]. The tomograp¥ the real and imaginary parts of the permittivity obtained
has 32 transmitters located on a circle of 16.5-cm radius. Ffter 30 iterations are shown in Figs. 3 and 4, respectively.
every transmitter, 16 receivers located behind the object ®he quality of the real-part image is much better than that
a circle of 16-cm radius receive the radiation. As we used the imaginary part because the contrast between the object
single frequency of 2.45 GHz, we have a set of 512 simulatédd immersion liquid for the real part is more than for the
measured data. We use a mesh of 542200 cells in the imaginary part by a factor of approximately five. In our second
calculation of the simulated measured data, which is moegample, we do not use argy priori information. In Fig. 2,
than adequate for obtaining a very high precision. we can see that the RE stabilized on a much higher level and
The initial value in all subsequent examples is the permitie final image (see Fig. 5) is very far from the original. In
tivity of the immersion liquid. The Cartesian mesh used in thihe third example, we again use theriori bounds with the
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Fig. 5. Reconstructed image of the real part of the permittivity of thEig. 7. Reconstructed image of the real part of the permittivity of the

mathematical heart model. Noiseless data witheptiori bounds. experimental phantom.
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Fig. 6. Reconstructed image of the real part of the permittivity of th ) . o
9 9 p P Y mathematlcal torso model. Noiseless data veitpriori bounds.

mathematical heart model. Noisy data (signal-to-noise ratio of 30%) wi
a priori bounds.

wall has three small holes of 1.5 and 2.5 cm. The immersion
l%quid, space inside the shell, heart chambers, and holes have

simulated measured data with a signal-to-noise ratio of 30 . s
= 33 +412. The values of the permittivity are comparable

In this case, we need a much larger regularization parametef . . . :
and the RE is larger than even in the second example, but EE that of the involved biological tissues at the frequency of 1

image of the real part of the permittivity is still good enough Rz. A lower frequency is chosen because it offers a much
(seeg Fig. 6) P P y 9 Petter penetration depth and still reasonable resolution. The

tomograph has 64 transmitters located on a circle of 30-cm

For the e>'<per'|mental |n'vest|gat'|ons, 'two asy mmetncal%diu& For every transmitter, 64 receivers located evenly on a
enclosed cylindrical containers with thin plastic walls arg;,.jo of 20-cm radius receive the radiation. Thus, we have a
used [8]. The container cylinders have diameters of 6.5 agg; ot 4096 simulated measured data. The image of the real part
2.1 cm. The inner container is filled with water. The OUt€ft the permittivity is shown in Fig. 8. All mentioned details
one is filled with a liquid withe = 54. The phantom . the torso (as well as some artifacts) can be clearly seen in
was placed in the center of the microwave chamber of Ois figure. In these calculations, we use a644 Cartesian
two-dimensional tomograph. The image in Fig. 7 is in vefesh and a 256< 128 polar mesh.
reasonable agreement with the real phantom. All calculations were performed on a DEC Alpha-8200

To push our algorithm to its limits, we use a mathematicgbmputer.
model of a torso with external dimensions 3 26 cm,
which is composed of an elliptic 1.5-cm-thick shell with IV. Discussion
e = 10 4 2. A model of the heart with a diameter of 13.5 In our previous report [8], we concluded that 32 receivers
cm ande = 58 + 421 is placed inside the shell. The “heart’'were not sufficient for imaging by the discussed spectral-
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domain method. With the present spatial-domain method, wg]
did not have such problems, and 32 receivers were adequate
in our computational and physical experiments with relatively
simple phantoms. Aside from this, this method proved to be
more robust to noise contamination. (10]
This paper, as well as other above-cited papers, illustrate
that the Newton method is capable of finding the solution ¢f1]
very nonlinear problems. However, Fig. 5 shows that, in some
cases, availability o& priori information can be very critical. [12]
The proposed fast method of the direct-problem solution
and a dual-mesh approach make it possible to use the New
method for imaging two-dimensional objects with sizes and
properties comparable to that of a human body. The last
example proved to be a challenge for our DEC Alpha-82
computer. The program had been running several hours before
Fig. 8 was generated. Roughly speaking, in this case, t
computational efforts were equal for the direct and inver e]
steps of the algorithm. There are still some possibility of
further optimization of the direct-problem solution. The only*®!
reason we use the polar grid is that it naturally fits to the
boundary conditions (9) and allows the fast Fourier transforr.’]
However, since this mesh has very small cells in the central
region, some other mesh types with equally sized cells can
cover the same surface with a smaller number of nodes. i8]
this case, it may be possible to use the stationary equivalent
of the approximate absorbing boundary conditions [20] ifn9]
conjunction with some of the known methods of the eIIiptig20
equations solution (a very good short review of them may be
found in [21]). Though the mesh 6# x 64 = 4096 cells used
for the inverse problem seems to be fairly sufficient in the twd?!]
dimensional case, this number is definitely very close to the
upper limit. Taking into account the cubic dependence of the
computational efforts to solve (5) by the direct decomposition,
we can anticipate that further development of the Newton
method will depend on the invention of a fast iterative solution
of this equation. This is of particular importance for the threg
dimensional case when we have to face a mesh that is at |
64 (and probably more) times larger.
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